Evaluating land cover types from Landsat TM using SAGA GIS for vegetation mapping based on ISODATA and K-means clustering

نویسندگان

چکیده

The paper presents the cartographic processing of Landsat TM image by two unsupervised classification methods SAGA GIS: ISODATA and K-means clustering. approaches were tested compared for land cover type mapping. Vegetation areas detected separated from other types in study area southwestern Iceland. number clusters was set to ten classes. satellite GIS achieved using Imagery Classification tools Geoprocessing menu GIS. Unsupervised performed effectively unlabeled pixels machine learning Following an iterative approach clustering, grouped each step algorithm reassigned as centroids. contributes technical development application cartography demonstrating effectiveness remote sensing data applied vegetation environmental

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Approach on Land Use Land Cover Classification of Landsat TM Over Ulu Kinta Catchment

Providing accurate land use/ land cover (LULC), as an important component in remote sensing, have been a point of concern which subjected to many studies. Researchers have made great efforts in developing superior classification approaches and techniques which can lead to classification accurateness. This study was sought to investiagte LULC over Ulu Kinta Catchment in multispectral Landsat TM ...

متن کامل

Mapping Vegetation and Forest Types using Landsat TM in the Western Ghat Region of Maharashtra, India

Vegetation plays a key role in reducing ambient temperature, moisture and pollutant capture, energy use and subsequent ground level ozone reduction. In recent years vegetation mapping has become increasingly important, especially with advancements in environmental economic valuation. The spatial information from the remote sensing satellites enables researchers to quantify and qualify the amoun...

متن کامل

A model-based approach for mapping rangelands covers using Landsat TM image data

Empirical models are important tools for relating field-measured biophysical variables to remotely sensed data. Regression analysis has been a popular empirical method of linking these two types of data to estimate variables such as biomass, percent vegetation canopy cover, and bare soil. This study was conducted in a semi-arid rangeland ecosystem of Qazvin province, Iran. This paper presents t...

متن کامل

Detection of Drought Effects Change on Isfahan City Green Vegetation Cover by Using Landsat TM and ETM+ Data

احمد مختاری1، ناهید کاوه‌زاده 2، فرزاد شنبه دستجردی3 1- عضو هیات علمی مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان[email protected] 2 -کارشناس مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان 3-کارشناس ارشد مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان چکیده امروزه استفاده از سامانه‌های سنجش از دور جزء لاینفک مطالعات زیست محیطی و از اسناد معتبر در بررسی‌های اقتصاد محیط زیست، توسعه سامانه‌های دقیق‌ت...

متن کامل

An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery

This paper focuses on an automated ANN classification system consisting of two modules: an unsupervised Kohonen’s Self-Organizing Mapping (SOM) neural network module, and a supervised Multilayer Perceptron (MLP) neural network module using the Backpropagation (BP) training algorithm. Two training algorithms were provided for the SOM network module: the standard SOM, and a refined SOM learning a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Agriculturae Serbica

سال: 2021

ISSN: ['2560-3140', '0354-9542']

DOI: https://doi.org/10.5937/aaser2152159l